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Abstract: In this paper, we study the size and power of various diagnostic statistics for

univariate conditional heteroscedasticity models.

These test statistics include the residual-

based tests recently derived by Tse [2001], Li and Mak [1994] and Wooldridge [1991]. Monte
Carlo experiments with 1000 replications are conducted to generate conditional variances which-
follow the ARCH/GARCH processes. We use quasi-maximum likelihood estimation method
to obtain estimates of parameters under different ARCH/GARCH models. It is found that the

Tse and Li-Mak diagnostics are more powerful.
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1. INTRODUCTION

The autoregressive conditional heteroscedas-
ticity (ARCH) model (Engle [1982]) and the
generalized ARCH (GARCH) model (Boller-
slev [1987]) have been used extensively for
analysing time series data. Franses and van
Dijk [2000] provide an in-depth treatment
of the subject and demonstrated the impor-
tance of capturing conditional variance struc-
tures in empirical economic and finance re-
search.

While empirical researchers have been enjoy-
ing the success of fitting GARCH models in
univariate time series, little has been focused
on the checking of model adequacy. In fact,
the Box-Pierce [1970] type of test statistic
is regarded as the most popular diagnostic
check. However, Li and Mak [1994] show
that it does not follow an asymptotic X2
distribution. More recently, Tse (2001} de-
rives a residual-based diagnostic test which
accommodates the distortion caused by us-
ing OLS estimates. This paper is to compare
the size and power of three diagnostic tests
proposed by Wooldridge [1990, 1991], Li and

Mak [1994] and Tse [2001], respectively. The
rest of this paper is as follows. Section 2
gives a brief description of the diagnostic
tests for model adequacy. Section 3 presents
the Monte Carlo simulation results. Finally
Section 4 gives some concluding remarks.

2. TEST STATISTICS

Consider a univariate time series of observa-
tions ¥1,- - - ,Yn With conditional heteroscedas-
ticity generated by the following equations:

— [t = €, (1)

e = Vhem (2)

where p; is the conditional mean and h; is
the conditional variance dependent on the
information set ®;_; at time t — 1. The
conditional mean may be a function of past
observations of y; and values of a vector of
weakly exogenous variables. In addition, 7
are independently and identically distributed
with mean zero and variance 1. We consider
the following GARCH(p,q) models

1317



P q
he=ao+ Y oshei+ Y Bier—i (3)
i=1 t=1
Let @ be the vector of parameters capturing
u: and h;. One can obtain the maximum
likelihood estimator (MLE) 8 of 8 based on
the most commonly used assumption of er-
rors following either normal or Student’s t.
For notational convenience, denote € and ﬁt
as values of ¢ and h; evaluated at 5, and
the estimated standardized residuals as 7j; =

€/ th. In what follows we briefly summarise
the gist of three residual-based statistics.

2.1 Wooldridge test

Wooldridge [1990, 1991] derives a general regr-

ession-based diagnostics applicable to a wide
class of possible misspecification. Within the
framework of GARCH models, we adopt the
Wool- dridge’s diagnostic test by using the
squared standardized residuals. Let’s define
Oy = (€1, € ,5,---,& ) as the vector of
indicator variables. Denote vgﬁt as the gra-
dient vector of h; with respect to 8 evalu-
ated at 5, and VOEt = V()Tlt /Et Basically,
the Wooldridge test statistic is computed by
three steps. First, obtain m-element residu-
als 7, by regressing each elements of &; on
Vght Second, regress unity on the vector of
1L TEegTessors <I>t'rt, where @, = €2 —1. Finally,
compute W(m) = N — SSR, where SSR is
the sum of squares of residuais of regression
in the second step. Wooldridge shows that in
the absence of model misspecification, W (m)
is asymptotically distributed as x?(m) with
m degrees of freedom.

2.2 Li-Mak test

Li and Mak [1994] question the adequacy of
using the popular Box-Pierce statistic as ap-
plied to the squared standardized residuals.
They show that the Box-Pierce statistic does
not converge to a x?2 distribution asymptot-
ically. Working on correlation coefficients of
the squared standardized residuals, Li and
Mak [1994] derive an appropriate asymptotic
distribution and provide some diagnostic tests
for GARCH models.

1318

Let ék be defined as

Z(

t—k+1

-1k -1 ()

Then, the lag-k correlation coefficient 7 of
the squared standardized residual 7; can be
defined as

~ Etv—kn(ﬂt 1)(5;2 k 1)
T = 3
1(71: - 1)

7k can then be rewritten as Cj /6’0. Let 7=
(71,72, ++,7m)’ denote the vector of corre-
lation coefficients containing elements from
lags 1 to m. Li and Mak [1994] show that
+/n7 has an asymptotic normal distribution.
The consistent variance of y/n7 can be esti-
mated by V = I — (XG~1X')/4, where I is
the U x U identity matrix, G~! is a consis-
tent estimate of the asymptotic variance of

Va0 —0) and X = (X1, Xz, , Xm)' with

(5)

1 & h
Xe=—= 3 Y@ k=1,2,---,m
Mimkr1
(6)

Hence, if the model is specified correctly, @(m)
=n7 V 17 will be asymptotically distributed
as a x2 with m degrees of freedom. For prac-
tical purposes, the factor 1 /4 can be replaced
by l/C'2 because Co converges to 2 when ¢; .
is Gaussian. We mention in passing that the
Box-Pierce statistic is not considered as Li
and Mak [1994] show that V is generally not
idempotent even asymptotically.

2.3 Tse test

Tse [2001] proposes a residual-based diag-
nostic for the adequacy of the conditional-
variance structure by modifying the ordinary
least squares (OLS) procedure which includes
lagged squared standardized residuals in the
regression. As warned by Wooldridge [1990],
the inference procedure based on the conven-
tional OLS estimates are questionable. Tse
[2001] makes correction for the asymptotic
variance of the OLS estimates and derives a -
residual-based statistic which follows an asymp-
totic x2 distribution. Sketch of the Tse test is
summarized as follows. First, regress 77 — 1



on a vector of lagged squared standardized
residuals d; = (21,725, ** y TI2_p), cODSist-
ing of the following structure.

2 —1=dyé + v (7)

where 6 is a m x 1 vector of regression pa-
rameters. Second, applying the established
results of Pierce [1982] which deals with sub-
stituting estimators for parameters, Tse ob-
tains the following test statistic

T(m) = n&'LG'Lé (8).

where R L
G =¢L - SRS (9)
L=> ddi/n (10)
S=Y&@w/o0)m ()

e=) (% -1%n (12)

& is the OLS estimator of 6, and R is a con-
sistent estimate of the asymptotic variance of
V(- 6).

Tse [2001] shows that T'(m) is asymptotically
x? distributed with m degrees of freedom if
the model is correct. In practice, derivatives
in matrix § can be computed by numerical
differentiation, or alternatively by using re-

cursive formulae given by Fiorentini et al.
[1996], or by Tse [2000].

3. SIMULATION RESULTS

We conduct Monte Carlo experiments to ex-
amine the empirical size and power of the
tests proposed by Wooldridge, Li and Mak,
and Tse. We confine to low-order ARCH and
GARCH processes for the conditional vari-
ance h;. They include the following data
generating processes (DGP) denoted by M1
for ARCH(1), M2 for ARCH(2) and M3 for
GARCH(1,1), respectively.

M1: hy=0.2+0.6€2,, (13)
M2: hy =0.2+0.66_;+0.2¢2,, (14)
M3: hy=02+0.7Ths_; +0.1¢Z_;, (15)

Without loss of generality, the conditional
mean of each DGP is assumed to be zero.

For each DPG, we generate observations of
sample size N, for N = 200, 500 and 1000, re-
spectively and fit an ARCH/GARCH model
to the data. The estimation models (EM)
include ARCH(1), ARCH(2) and GARCH(1,
1). The relevant diagnostic statistics are com-
puted from the sample estimates.

To gauge the performance of various tests for
Gaussian and non-Gaussian errors, we con-
sider processes that follow [i] a standard nor-
mal distribution, and [ii] a Student’s t dis-
tribution with 8 degrees of freedom. In ad-
dition, all MLE are obtained under the as-
sumption of normality, and all estimations
are computed by using GAUSS programmes
based on 1000 replications. As noted by Wool-
dridge (1991), the loss of efficiency in the
quasi-MLE under Student’s ¢ may be insignif-
icant.

The empirical size of various diagnostic tests
is obtained by matching the DGP with the
appropriate EM. We choose m = 1, 2, 3 and
4 because the magnitude of m is indepen-
dent of the validity of the diagnostics. The
empirical size is obtained when each of the
appropriate model is estimated from the cor-
responding DGP. We use the 5 percent nom-
inal size as benchmark for comparison. As
can be seen from Table 1, W(m), Q(m) and
T(m) tests generally have reasonably reliable
size under the normal errors and tg errors. In
fact, they yield good empirical size even for
such a sample size of 200. However, all tests
tend to over-reject the null hypothesis, ex-
cept the Li-Mak and Tse tests which under-
reject the null at m == 1 for the GARCH(1,
1) model.

Table 2 tabulates the empirical power of the
three diagnostic tests. To avoid nesting be-
tween DGP and EM, we consider four com-
binations, including {M2, ARCH(1)}, {M2,
GARCH(1, 1)}, {M3, ARCH(1)} and {M3,
ARCH(2)}, respectively. Other combinations
such as {M1, ARCH(1)} and {M1, GARCH(1,
1)} are excluded.

It can be observed that all three diagnostic
tests have the lowest empirical power when
m = 1, and no clear-cut options among m =
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Table 1. Empirical Size of Diagnostics for Univariate Conditional Heteroscedasticity.

. Test Statistics
W@ Q1) Q®2 QB) QM@ [ TH T2 TE T4

|MODE | N [W({I) W@ W(3)

Panel A: N(0, 1) errors

MA1 200 | 5.7 5.7 5.2 6.3 6.2 5.6 49 4.6 6.2 6.3 5.8 6.0
500 | 7.1 5.9 5.8 7.7 5.7 6.1 5.3 54 5.7 6.0 6.2 5.6
1000 | 6.1 5.0 52 6.5 5.1 4.3 4.3 4.3 5.1 4.8 4.5 3.9

MA2 200 {64 6.3 6.0 6.6 6.2 7.8 74 6.6 6.3 8.4 7.2 74
500 | 5.5 5.5 5.6 6.5 7.5 8.6 9.1 10 7.6 8.4 9.4 11
1000 | 7.7 5.8 7.1 8.0 54 74 7.9 78 54 7.4 7.5 7.3

MG 200 | 5.5 4.8 5.1 7.3 23 5.3 79 6.3 23 4.8 8.6 6.8
500 | 5.9 6.4 5.8 6.5 2.8 4.8 5.4 6.0 2.8 4.9 5.8 6.5
1000 | 6.3 5.1 6.4 6.0 2.5 4.0 5.7 6.0 2.5 3.9 5.8 6.1

Panel B: tg errors

MA1 200 | 6.1 5.4 6.1 6.1 5.8 5.3 5.2 5.8 5.9 5.8 5.8 6.0
500 | 4.8 5.0 5.3 5.8 42 4.4 5.1 5.2 4.3 44 5.2 4.7
1000 | 4.9 5.7 5.7 6.1 4.7 4.3 4.7 5.5 4.7 44 51 5.5

MA2 200 | 64 5.9 6.0 6.9 3.9 4.9 4.7 6.2 4.0 5.3 4.7 6.2
500 | 5.0 4.7 5.3 5.4 5.5 5.7 6.6 6.6 5.5 6.0 6.9 74
1000 | 5.9 4.1 4.9 4.5 3.9 4.9 6.3 6.6 3.9 5.2 6.2 6.7

MG 200 | 5.9 5.5 6.9 7.6 1.4 3.2 54 . 64 |13 3.1 6.1 7.2
500 | 5.5 5.8 7.0 7.2 1.2 42 - 59 5.8 1.2 4.2 6.2 6.6
1000 | 5.9 5.3 5.4 5.1 3.0 43 5.3 5.6 3.1 42 5.5 6.0

Notes: MA1 stands for (M1, ARCH(1)), MA2 for (M2, ARCH(2)) and MG for M3, GARCH(1,1)). W(m) is the
Wooldridge test. Q(m) is the Li-Mak test. T(m) is the Tse test. We consider m = 1, 2, 3 and 4. The figures in
the table are the empirical frequency of rejection in percentage. The nominal size of the tests is 5 percent. The
estimation is based on 1000 replications.

f d f fr in the t-distribution.
2, 3, or 4. Power of all tests decreases when of degress of freedom in thev=cisttibukion

the true residuals are tg distributed. The
{M3, ARCH(2)} combination give the low-
est power among all three tests. One rea-
son is due to the loss of efficiency in the

4. CONCLUDING REMARKS

‘We have studied the empirical size and power
of the diagnostic tests derived by Wooldridge,

quasi-MLE under the assumption of normal-
distributed errors.

We mention in passing that the pattern of
‘simulated empirical size and power of the
three diagnostics under study are consistent
with [i] various values of ARCH(1), ARCH(2)
and GARCH(1, 1) models used in the data
generating processes; [ii] number of replica-
tions (i.e. 1000 or 10000); and [iii] choice

Li-Mak and Tse using Monte Carlo simula-
tions. It is found that all three tests have
reasonably reliable empirical size. However,
the Li-Mak and Tse tests are more power-
ful than the Wooldridge test. As such, the
Li-Mak and Tse tests should be regarded as
more appropriate diagnostic tools for check-
ing the model adequacy of univariate condi-
tional heteroscedasticity specifications.
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Table 2. Empirical Power of Diagnostics for Univariate Conditional Heteroscedasticity.

Test Statistics

N(0, 1) errors tg errors

DGP EM N Test |Tm=1 m=2 m=3 m=4|m=1 m=2 m=3 m=4

M, | ARCH@1) | 200 | W(m) | 4.9 5.6 6.7 8.3 5.6 6.2 6.8 7.5
Qm) | 111 374 396 389 | 60 250 286 273
T(m) | 11.2 356 415 389 | 60 240 280 272
M, | ARCHQ) | 500 | W(m) | 55 6.8 7.1 8.3 48 5.2 5.3 6.9
Qm) | 215 75 772 774 | 98 535  57.3  57.2
T(m) | 21.8 719 776 769 | 98 516 582 569
M, | ARCHQ) | 1000 | W(m) | 4.2 5.6 6.6 7.1 46 6.8 7.0 7.7
Q(m) | 364 939 957 964 | 157 795 834 828
T(m) | 364 934 959 963 | 157 787 . 837 827

M, | GARCH(1,1) | 200 | W(m) | 5.9 5.6 6.9 7.2 5.3 5.9 6.6 6.6
Qm) | 42 121 123 104 | 28 9.3 9.4 9.5
T(m) | 42 123 121 112 | 28 9.0 8.9 9.8
M, | GARCH(1,1) | 500 | W(m) | 5.0 4.7 5.4 6.2 4.0 48 5.1 5.6
Qm) | 33 170 161 145 | 33 114 110 120
T(m) | 33 161 154 151 | 33 113 109 118
M, | GARCH(1,1) | 1000 | W(m) | 5.1 6.2 5.8 7.5 5.0 4.0 4.9 5.6
Qm) | 38 206 196 186 | 33 145 134 139
T(m) | 39 204 190 182 | 33 140 129 134

Ms; | ARCH(1) | 200 | W(m) | 4.2 5.4 6.3 7.0 6.2 5.5 6.8 7.5
Qm) | 72 126 142 139 | 56 84 102 112
T(m) | 7.3 123 149 128 | 5.7 83 110 118
M; | ARCH(1) | 500 | W(m) | 5.7 5.6 6.0 5.9 5.5 5.0 5.9 7.2
Qm) | 90 234 284 261 | 49 185 220 221
T(m) | 91 220 281 266 | 50 178 224 223
Ms; | ARCH(1) | 1000 | W(m) | 65 7.5 6.6 6.6 5.7 4.2 4.8 5.1
Qm) | 126 383 448 456 | 52 254 313 320
T(m) | 127 374 442 461 | 51 247 320 324

Ms; | ARCH(2) | 200 | W(m) | 65 48 47 6.4 6.3 6.2 6.1 5.8
Q(m) | 72 7.2 6.0 6.6 5.1 5.2 5.9 5.0
T(m) | 7.3 8.0 7.0 8.0 5.0 5.6 6.3 5.6
Ms | ARCH(2) | 500 | W(m) | 53 43 5.7 7.0 5.2 48 5.3 6.4
Q(m) | 5.1 6.6 6.9 7.4 5.3 7.3 7.0 6.8
T(m) | 5.3 6.3 74 7.5 5.2 7.3 7.6 7.2
Ms | ARCH(2) |1000 | W(m) | 5.5 45 5.2 5.6 6.3 46 5.5 6.1
Q(m) | 65 7.1 8.0 7.0 4.9 5.6 7.7 6.8
T(m) | 64 7.2 7.9 7.5 48 5.7 7.2 6.9

Notes: DGP is the data generating process. EM is the estimated model. W(m) is the Wooldridge test. Q(m)
is the Li-Mak test. T(m) is the Tse test. We consider m = 1, 2, 3 and 4. The figures in the table are the

" empirical frequency of rejection in percentage. The nominal size of the tests is 5 percent. The estimation

is based on 1000 replications. In addition, those combinations for which the DGP is nested within the EM are
excluded.
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